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Abstract 

 

This study gives a detailed mathematical model of a single pivoted-pad in order to obtain maximum load 

carrying capacity and the pressure take place in the pivoted-pad thrust bearing using the Simulated Annealing 

(SA) optimization technique. The SA is based on the idea of exploring the solution space by moving around 

in the neighborhood structure for the global optimum point. It does not require the evaluation of gradient of 

the objective function. It imitates the process of annealing in metals as they cool from liquid to solid states. 

Results checked against the numerical solution to demonstrate capability of the technique which produces 

efficient solutions. 
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1. Introduction 

 

Modern high speed machineries are complex. With increasing performance criteria, the design process of 

these system usually require the integration of the design and analysis by ensuring the safe and reliable 

operation of pivoted-pad thrust bearings, one of most important element in such machinery. Pivoted-pad 

thrust bearings are customarily used to support high speed machinery. They eliminate oil whirl instability and 

other destabilizing factors, which contribute to system instability, such as thermal instability, internal friction, 

and cross-coupling [1]. In this type of bearing, the pads are free to follow the rotor (runner) and the pad tilts 

to compensate for misalignment between the pad and the rotor. The forces produced in the bearing are not 

capable of driving the rotor in unstable mode. Each pad is pivoted at a point to create a converging fluid film. 

Interested readers can refer to the studies [2], [3], and [4]. As the complexity of the system is increased, the 

need to develop a computational environment that allows a natural exchange of data and results between 

producers leading to integrated approach to optimal design has become evident. Traditional optimization 

methods are highly sensitive to starting points and easily converge to local optimum not to global optimum 

solution [5]. 

 

Developments in computer technology have proved to be a great chance to the world of design optimization. 

Many non-traditional optimization methods such as Genetic Algorithms and Particle Swarm Algorithms have 

been utilized to solve mechanical design optimization problems, see references [6] and [7]. Any efficient 

optimization algorithm explores to investigate new and unknown areas in search space and exploit to make 

use of knowledge found at point previously visited to help find better solution point. From this point of view, 

Simulated Annealing (SA) is utilized for a pivoted-pad thrust bearing design. The SA is a powerful 

optimization technique and it has the ability to find global optimum for non-linear problems. The SA can 

provide a remarkable balance between exploration and exploitation of the search space. From this point of 

view, this study provides use of the SA to seek a global optimum solution to problem in hand. The SA 

algorithm imitates the process of annealing in metals as they cool from liquid to solid states. The algorithm is 

based on the idea of exploring the solution space by moving around in the neighborhood structure for the 

global optimum point. It does not require the evaluation of gradient of the objective function. 
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2. The Simulated Annealing 

 

In this section of the paper, the fundamental intuition of the SA and how it processes are given briefly. The 

SA was proposed by Kirkpatrick et al. [8] to deal with complex non-linear combinatorial optimization 

problems. They showed the analogy between simulating the annealing of solid as proposed by Metropolis et 

al. [9]. The SA is an iterative improvement algorithm for a global optimization. It is inspired from 

thermodynamic to simulates the physical process of annealing [10] and [11] of molten metals. It obtains the 

minimum value of energy by simulating annealing which is a process employed to obtain a perfect crystal by 

gradual cooling of molten metals [12] in order to keep the system of melt in a thermodynamic equilibrium at 

given temperature. Thus, it exploits an analogy between the way in which a metal cools and freezes into a 

minimum energy crystalline structure. At high temperature, the atoms in the molten metal can move freely 

with respect to each other as the cooling proceeds, the atoms of metal become more ordered and the system 

naturally converges towards a state of minimal energy. This formation of crystal mostly depends on the 

cooling rate. If the metal is cooled at very fast rate, the atoms will form an irregular structure and the 

crystalline state may not be achieved. The Metropolis algorithm provides an efficient simulation of a 

collection of atoms in equilibrium at given temperature. The SA makes use of the Metropolis et al. [9] 

algorithm which provides an efficient simulation according to a probabilistic criterion stated as: 

 




 
  otherwise,e

0Eif,1
)E(P )T/E(                                                                                                                  (1) 

 

Thus, if 0E  , the probability, P , is one and the change - the new point- is accepted. Otherwise, the 

modification is accepted at some finite probability. Each set of points of all atoms of a system is scaled by its 

Boltzmann probability factor )kT/E(e  where E is the change in the energy value from one point to the 

next, k is the Boltzmann’s constant and T is the current temperature as a control parameter. Even at a low 

temperature, there is a chance for the system being in a high-energy state. Thus, there is a corresponding 

chance for getting out of a local energy minimum in favor of a better solution, a global one. The general 

procedure for employing the SA as follows;  

Step 1: Start with a random initial solution, X , and an initial temperature, T , which should be high enough to 

allow all candidate solutions to be accepted and evaluate the objective function. The initial temperature is 

problem specific and depends on the scaling of the objective function.  

Step 2: Set 1ii   and generate new solution ( ii
new
i SLrXX  ) where r is random number and iSL at 

each move should be decreased with the reduction of temperature. Evaluate )X(FF new
i

new
i  .  

Step 3: Choose accept or reject the move. The probability of acceptance (depending on the current 

temperature) if 1i
new
i

FF  , go to Step 5, else accept iF  as the new solution with probability )T/E(e  , where 

1i
new
i

FFE   and go to Step 4.  

Step 4: If iF  was rejected in Step 3, set 1i
new
i

FF  . Go to Step 5.  

Step 5: If satisfied with the current objective function value, iF , stop. Otherwise, adjust the temperature 

( T
new rTT  ) where Tr is temperature reduction rate called cooling schedule and go to Step 2. The process 

is done until freezing point is reached. The freezing point is the lowest energy state possible where the atoms 

are a pattern that corresponds to the global energy minimum of a perfect crystal. The major advantages of the 

SA are an ability to avoid becoming trapped in local optimum. This is due to nature ability of the SA 

allowing deteriorations with a large probability in the objective function. 

 

3. Formulation of the Problem 

 

The pivoted-pad bearing was invented by Anthony G.M. Mitchell in 1905 and independently by Albert 

Kingsbury in 1910 in a slightly different type [13]. Nowadays, the pivoted-pad thrust bearing (see Figure1) is 

designed to transfer high loads in applications due to good operational lifespan and minimum power loss. In 

order to attain hydrodynamic lubrication, the pivoted-pad should be placed at an angle to the oil flow so that 

a converging wedge is produced as shown in Figure 2. 
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Figure 1 A pivoted-pad thrust bearing [14]. 

     

The mathematical modeling of fluid film lubrication separating pad and runner in the pivoted-pad thrust 

bearing consists of a flat surface sliding over a pivoted-pad is shown in Figure 2. The pad is stationary while 

the runner is moving at a driving speed, U . Due to the direction of the driving velocity, the fluid is pulled 

into the bearing and proceeds through a converging wedge resulting with pressure generation. The generated 

pressure will force fluid out both the leading and trailing edges, and provides a force to carry a load. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Schematic representation of a single pivoted-pad thrust bearing 

 

The initial phase of utilizing an optimization technique to the pivoted-pad needs modeling of the system 

behavior. Mathematical expression of load carrying capacity for a single pivoted-pad and the derivation of 

governing the expression are presented following an approach found in [15]. The model is based on the 

Reynolds equation for pressure between pad and runner. Pressure, p , is a function of x . Reynolds equation 

in one dimension is given as: 

 

]h)hh[(U6dxdp 3                                                                                                                              (2) 

 

)Hxh(h                                                                                                                                                         (3) 

 

KB)]hh(h[BH 121                                                                                                                             (4) 

 

]h)hh[(K 112                                                                                                                                            (5) 

 

The pad convergence ratio, K , is a function of position of the pivot only. It is independent of the operating 

conditions. The load carrying capacity depends strongly on convergence ratio. 
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111211x hdh)KB(hdh)hh(h[B)hdh(Hd                                                                                  (6) 

 

)]hdhh()hdh)[(KhB(U6)]hdxh()hdx[(U6dp 32
1

32                                                      (7) 

 

]c)h2h()h1()[KhB(U6p 2
1                                                                                                         (8) 

 

where p is pressure, U  is surface velocity in x direction, B  is length in direction of motion,   is dynamic 

viscosity, c  is the constant of integration, hh   is at peak pressure, 1h is the fluid film thickness at the 

leading edge, 2h is the fluid film thickness at the trailing edge, and L  is length (for a section of infinite pad).  

 

The boundary conditions are 1hh   and 2hh  , 0p   at either end of pad. The formulation of governing 

equation begins with the boundary conditions established. 

 

0ch2hh1 2
11                                                                                                                                      (9) 
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)hh(1))hh(h2(hh2)h1()h2h()h1(c 1212
2
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2
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Substituting Equation (13) into Equation (8) becomes 

 

])hh(1()h21))(hh(hh2()h1()[KhB(U6p 12
2

12211                                                        (14) 

 

])hh(1()h)hh(hh()h1)[(KhB(U6p 12
2

12211                                                                       (15) 

 

The load carried per unit length LW  is the integral of the pressure over the pad 

 





2

1

h

h

BH

H
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where W is supporting load.  Substituting p into Equation (16) becomes 

 
2

1

h

h

12
2

122111 dh])hh(1]h)hh(hh[)h1[())Kh(B(U6))Kh(B()LW(                                    (17) 

Rearranging and integrating 
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1
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)])1()1(2()[ln)1(1()hLBU6(W 22
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where 12 hh  and wF is load factor 

 

4. Employing the Simulated Annealing 

 

The statement of the problem is formulated to find the maximum load carrying capacity and pressure for the 

given bearing parameters with respect to design variables 1h and 2h  as follows: 
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Subject to  

  

0025.0h0010.0 1                                                                                                                                       (27) 

 

0010.0h0.0 2                                                                                                                                            (28) 

 

Parameters used are oil dynamic viscosity, 610x2  reyn ( snm/kg01378.0  ), surface velocity, 

50U  ft/sec ( sn/m24.15 ), length in the direction of motion, 0.5B  inch ( mm127 ), and length for a 

section of infinite pad, 50.0L  inch ( )mm7.12 .  

 

By employing the SA, a random initial point is selected at high temperature and a series of moves are made 

according to defined annealing schedule. The annealing schedule determines the degree of uphill movement 

permitted during the search. The change in the objective function values, E , is computed at each move. A 

new solution is generated in the neighborhood of the current configuration in each iteration. This new 

solution is automatically accepted with probability of 1, if it results in decreased objective function value. 

Otherwise, if the new solution is increased the objective function value, the acceptance is given with a small 

probability, )kT/E(e  . Where T   is the current temperature and k  is Boltzmann’s constant. The 

probability expression suggests that if the temperature of the system is large, the probability of accepting the 

solution increases. Otherwise, if  T  is low, the probability of accepting solution decreases. Therefore, the 

temperature needs to be high at the beginning. As the iteration proceeds, the temperature is gradually 

decreased until the stopping condition is met. There are many ways to determine when to stop running the 

algorithm: One is the temperature when reduced to a threshold. Another is to reach a pre-specified number of 

temperature transitions. All the generating and acceptance depend on the temperature. The global optimum 

can be converged by carefully controlling the rate of cooling of the temperature. The important setting 

parameters of the SA for this study are chosen as follows: Initial temperature 100000T  , temperature 

reduction rate 5.0rT  , and number of iterations performed at a particular temperature 5n  . 

 

5. Result and Discussion 

 

In Figure 2, it can be seen that the fluid film lubrication in the pivoted-pad thrust bearing generates pressures 

in a viscous fluid dragged into a converging wedge existing between the surfaces within 1h (the fluid film 

thickness at the leading edge) and 2h  (the fluid film thickness at the trailing edge) in a relative motion. In 

Figure 3, it should be noted from the SA results that the maximum pressure is 210x28.4  psi ( 2m/kg09.30 ) 
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at 3
1 10x93.1h  inch ( mm0490.0 ) and 4

2 10x00.8h  inch ( mm02032.0 ). The variation of load 

capacity factor with the pivoted-pad inclination is shown in Figure 4. The systematic evaluation of how load 

capacity factor varies with inclination of the bearing using analytical solution is given. The distribution of 

function values by the SA during search with converging on global optimum point is also given on the same 

plot. There is a very good agreement between the calculated and the SA results. It can be noted that the 

maximum load capacity factor, 0.160, is obtained with the inclination ratio, 21 hh , value of 2.19. Also 

Figure 5 gives variation of load capacity factor versus 1h and 2h . Global optimum point for the load 

capacity factor 160.0 at 3
1 10x612.1h  inch ( )mm0409.0  and 4

2 10x351.7h  inch ( mm0186.0 ) by the 

SA is given on the same plot. Figure 6 gives plot of the load supported by a single pivoted-pad versus 1h and 

2h . The maximum value of the load supported found via the SA after 38773  function evaluations (upon 

termination) is 71.6168 pound ( kg08.2798 ) which is the same as numerical solution at 3
1 10x0.1h  inch 

( )mm0254.0  and 5
2 10x99.9h  inch ( mm0025.0 ).  

 

 

 

Figure 3. Lubrication pressure profile versus 1h and 2h  
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Figure 4. Variation of load factor versus pad inclination, 21 h/h  

 

 

Figure 5. Variation of load factor versus 1h and 2h  
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Figure 6. Load capacity versus 1h and 2h  

6. Conclusion 

 

This study employs a nature inspired algorithm called simulated annealing (SA) to find the maximum load 

carrying capacity and pressure distribution for a single pad of a pivoted-pad thrust bearing. The load 

components are obtained by integrating the pressure in the film converging using Reynolds equation. A 

numerical study is also conducted to show the efficiency and applicability of the SA for the problem in hand. 

Results checked against the numerical solution to demonstrate capability of the technique used. It is worth 

trying to compare the results obtained by numerical solution. The SA offers a guarantee of optimum point 

and finds the global optimum with a high probability as in this study. The major disadvantage of the SA is 

computation intensive. However, this is not significant with current advances in computers and computing 

techniques capability. It can be concluded that nature inspired algorithm is proven to be robust and has 

demonstrated its capability to produce an efficient solution. 
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